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Abstract

Dynamical seasonal forecasts of tropical storm frequency require robust and efficient al-

gorithms for detection and tracking of tropical storms in Atmospheric General Circulation

Models (AGCMs). Tropical storms are generally detected when dynamic and thermodynamic

variables meet specified criteria. Here, objectively defined model and basin-dependent detec-

tion criteria improve simulations of tropical storm climatology and interannual variability in

low-resolution AGCMs. An improved tracking method provides more realistic tracking and

accurate counting of storms.
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1. Introduction

The impact of hurricanes, typhoons and tropical cyclones on society gives considerable importance

to the problem of forecasting seasonal tropical cyclone frequency. Routine seasonal forecasts of

tropical storm frequency in the Atlantic sector are produced using statistical methods by Colorado

State University (Gray et al., 1993, 1994; Landsea et al., 1994), the Climate Prediction Center of

the National Oceanic and Atmospheric Administration (CPC, 2002) and the University College of

London (UCL, 2002). Statistical seasonal forecasts are also issued for the Australian sector and

the Western North Pacific (Nicholls, 1992; Chan et al., 1998). Dynamical forecasting of seasonal

hurricane activity using climate models is another promising approach (Bengtsson, 2001).

Seasonal AGCM prediction of large-scale variables known to affect tropical storm activity is

one dynamical method of forecasting tropical storms frequency (Ryan et al., 1992; Watterson et al.,

1995; Thorncroft and Pytharoulis, 2001). Another method, and the one that is the subject of this

work, is based on the observation of tropical storm and cyclone-like structures in low-resolution

AGCMs and coupled atmospheric-ocean models (Manabe et al., 1970; Bengtsson et al., 1982;

Krishnamurti, 1988; Krishnamurti et al., 1989; Broccoli and Manabe, 1990; Wu and Lau, 1992;

Haarsma et al., 1993; Bengtsson et al., 1995; Tsutsui and Kasahara, 1996; Vitart et al., 1997; Vitart

and Stockdale, 2001).

Some aspects of these model tropical storms, such as their spatial and temporal distribution,

are similar to observed tropical storms. The intensity of the model tropical storms is weaker and

the spatial scale larger than observed due to low model resolution (Bengtsson et al., 1982; Vitart

et al., 1997).

A fundamental issue is then the extent to which tropical storms in AGCM simulations represent

observed climatology and interannual variability. A key element in the investigation of this issue is

the objective detection and tracking of model tropical in AGCMs. Various tropical storm detection

and tracking methods are reviewed in Vitart (1998). These methods are based on monitoring when

chosen dynamical and thermodynamical variables exceed thresholds determined from observed

3



tropical storm climatologies. In previous studies (Bengtsson et al., 1982; Vitart et al., 1997), a

single choice of threshold criteria was used globally, although storm statistics vary greatly from

one ocean basin to another. Also, criteria taken from observational climatological values do not

account for model biases. Here, we demonstrate that using basin and model dependent threshold

criteria improves the climatology and interannual statistics of model tropical cyclones, thereby

increasing the utility of the models.

Tracks of tropical storms in AGCMs are usually made by connecting nearby locations that

satisfy the model storm detection criteria. Model tropical storms are then defined as those tracks

that are longer than some fixed time interval, in most cases 1.5 - 2.0 days (Bengtsson et al., 1995;

Vitart et al., 1997). Tracks defined in this manner are shorter than observed storm tracks. Such

unrealistic tropical storm tracks make landfall studies difficult. Here we introduce a new tracking

algorithm which extends tracks of detected storms forward and backward in time using relaxed

threshold criteria. A similar idea of relaxing the thresholds for the tracking has been used in a

Regional Circulation Model for the South Pacific (Nguyen and Walsh, 2001). This method allows

the identification of the formation and decay of model tropical storms, information useful for

studying cyclogenesis (Camargo and Sobel, 2002). Other algorithms for tracking synoptic objects

in AGCMs have been previously developed for extratropical cyclones where cyclone activity is

associated with strong variations in the pressure field (Williamson, 1981; Treut and Kalnay, 1990;

Murray and Simmonds, 1991; Hodges, 1994; Zolina and Gulev, 2002).

The new detection and tracking algorithms have been tested with a several different AGCMs

and found to improve the climatology and interannual variability compared to previous approaches

(Camargo et al., 2001). The algorithms were also applied to the ECMWF Reanalysis dataset

(Gibson et al., 1997; Serrano, 1997) with similar results. The tracking algorithm was also used

for specific tropical cyclones in the Indian Ocean generated by a regional model (RegCM2 (Giorgi

et al., 1993)) with different boundary domains (Landman et al., 2002).

We begin our discussion in Section 2 with the presentation of basin and model dependent

criteria for storm detection and their application to the T42 ECHAM4.5 model (Roeckner et al.,
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1996). Section 3 presents the new tracking method. Conclusions are given in Section 4. Details of

the algorithms are found in the Appendices.

2. Basin-dependent detection thresholds

In the tropical storm detection methods of Vitart et al. (1997) and Bengtsson et al. (1995), tropical

storms are identified by first requiring that the 850 hPa relative vorticity, the 10m wind-speed , the

temperature at 850 hPa, 700 hPa, 500 hPa and 300 hPa and the sea level pressure simultaneously

satisfy a set of criteria depending on several thresholds. Then nearby points are connected and

classified as a tropical storm when they span at least two days. Criteria details are given Appendix

A. A basin-independent version of this algorithm using the threshold values from Vitart et al.

(1997) and Bengtsson et al. (1995) was applied to an ensemble of 12 integrations of the ECHAM4.5

AGCM at T42 resolution forced with observed monthly mean sea surface temperatures for the

period 1979–1995. This resolution corresponds to the one used at IRI for routine seasonal forecasts

(Mason et al., 1999; Goddard et al., 2001). The seven ocean basins considered follow previous

studies and are shown in Fig. 1. In basins such as the Atlantic, the detection algorithm using basin-

independent thresholds does not detect tropical storms found by subjective visual inspection. Also,

differences in model behavior mean that thresholds appropriate for one model are not useful for

another model.

We require robust methods of estimating basin and model-dependent thresholds. Here we do

so by looking at the the statistical properties of the dynamic and thermodynamic variables used in

the detection criteria. Since we require that the criteria be satisfied simultaneously it is useful to

look at joint probability distribution functions (PDFs). Much of the relevant information can be

seen in joint PDFs of vorticity/anomalous integrated temperature and vorticity/surface wind-speed.

The detailed procedure used to calculate the PDFs is described in Appendix B.

In Fig. 2 the joint PDF for the low-level vorticity and the anomalous integrated temperature

is shown for the Western North Pacific and Atlantic basins based on the ECHAM4.5 results. The

low-level vorticity and anomalous integrated temperature are normalized in each joint PDF by the
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Figure 1: Definition of the ocean basins domains used in this study.

corresponding standard deviation in that ocean basin. The core portion of the two distributions is

quite different. Tropical cyclones correspond to extreme values of all three of our classifying vari-

ables, and therefore occupy a small region on the periphery of the PDF domain. In the joint PDF

vorticity-temperature, the tropical cyclones occur for large values of vorticity and positive inte-

grated temperature anomalies. At higher values of vorticity, the joint PDF distribution is such that

larger values of the temperature anomalies are expected. In a similar way, the joint PDF vorticity-

windspeed (not shown) has a tail toward high vorticity and speed values. Tropical cyclones have

all these characteristics: high vorticity, speed and positive temperature anomalies, so potentially

they can be well represented by appropriate tails of theses PDFs. The PDFs are normalized by

the total number of storms, so they represent a relative frequency of storms in each basin. The

tails of the two distributions in normalized variables in Fig. 2 are sufficiently similar that it seems

reasonable to use a single criteria in terms of the normalized variables.

Figure 2 shows that the ECHAM4.5 model has very different characteristics in the two basins

shown. In the Western North Pacific (Fig. 2a) the distribution has a larger spread, with higher

peak values of the vorticity, such that with a common threshold more storms would be detected.

We applied the same analysis two other AGCMs (ECHAM3 (Model User Support Group, 1992)

and NSIPP (Suarez and Takacs, 1995)) and to the ECMWF Reanalysis (Gibson et al., 1997) (not
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Figure 2: Joint probability distribution function (PDF) of the vorticityξ and integrated temperature
anomalyT for (a) the Western North Pacific and (b) the North Atlantic basins of the ECHAM4.5
model. In (a) and (b) the contour interval is2 × 10−4 and 9 contour intervals were used. The
variables are normalized by their respective standard deviationσ. σξ values are respectively1.3,
1.5 andσT are1.9 and2.0 in the Atlantic and Australian basin.
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shown), and all the PDFs obtained have similar qualitative features in the models and in the Re-

analysis. However, the numerical characteristics of the PDFs such as mean, standard deviation,

maximum location are basin and model dependent. This suggests defining the detection criteria in

relative terms rather than absolute terms.

Our detection algorithm is described in Appendix A. There are three variables with thresh-

old dependent criteria: low-level vorticity, surface windspeed and integrated vertical temperature

anomaly. The basin dependent threshold should reflect the different statistical characteristics of

each variable and be model dependent. We chose one single parameter to define the threshold of

the three variables: the standard deviationσ. However, among the variables we used as thresholds

different multiples of the standard deviation, so that the basin dependent threshold would not differ

greatly from the absolute thresholds. This choice allows us to have our thresholds defined from a

single variableσ in a form that is consistent with observed and previous studies results, but taking

into account the differing basin and model statistics.

The threshold for the vorticity in each basinξmin is the defined asξmin = 2σξ, i.e. two times the

standard deviation of the vorticityσξ in each basin. In the case of the vertical integrated anomalous

temperature, the standard deviationσT in each basin was calculated only among the cases that

there is a warm core, in analogy to the PDFs in Appendix B. The basin dependent threshold

for the vertically integrated anomalous temperatureTmin is chosen as equal to the basin standard

deviation,Tmin = σT . Finally, the surface windspeed basin dependent thresholdvmin was defined

using both the windspeed standard deviation in each basinσv and the windspeed global averagevgl

(calculated over ocean basins only) asvmin = vgl + σv. Values of the thresholds obtained this way

are shown in Table 1 together with the values used in our initial study. We note, for instance, that

the thresholds are lower in the Atlantic. These parameter choices were made based on the joint

PDFs statistical properties. The basin dependent threshold values so chosen are not very different

from the absolute ones initially used, which were based on observational values, but at the same

time reflect the different properties of the ocean basins in the models.

In Fig. 3 the effect of changing the thresholds from basin-independent to basin-dependent
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BInd SI AUS SP NI WNP ENP ATL
ξ × 10−5 3.5 3.0 3.0 3.0 3.0 3.6 2.6 2.6

v 15 11.4 11.8 11.2 12 11.8 10.4 10.4
T 3 2.1 2.0 2.1 1.7 1.9 1.9 1.9

Table 1: Basin-independent (BInd) and basin-dependent ECHAM4.5 thresholds for vorticity, sur-
face windspeed and integrated temperature anomaly for each of the ocean basins.
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Figure 3: Ensemble mean number of storms per year detected using basin-independent thresholds
(◦), the basin-dependent thresholds (x) and observations (*) for the (a) Atlantic and (b) Australian
basins.
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Type SI AUS SP NI WNP ENP ATL
Absolute 6.0 5.4 4.1 12.7 30.1 1.0 1.5

Basin dependent 9.7 7.2 5.3 11.4 36.3 4.0 3.7
Basin & Tracking 7.8 6.0 4.6 7.5 29.4 3.3 3.1

Observed 12.5 9.2 6.1 4.9 27.7 17.5 9.3

Table 2: Ensemble Average (12 members) number of storms in 17 years (1979-1995) using the old
and new thresholds and the new thresholds with the new tracking algorithm.

thresholds is shown for the ensemble mean number of storms in the Atlantic and the Australian

basins. In both cases, the ensemble mean number of storms increases in all years. The four regions

in which the basin dependent algorithm improves the detection significantly considering all years

and ensemble members are: the Atlantic (88%), Eastern Pacific (96%), South Indian (79%) and

Australian (63%). The percentages were calculated using the total number of storms per year in all

years and ensemble members. In these basins, the average number of storms becomes closer to ob-

served, although the model bias is not completely corrected. The improvement of the frequency of

storms occurred in all the AGCMs analysed, as the basin-dependent thresholds are also model de-

pendent. Therefore, the detection algorithm managed to obtain better results from AGCMs taking

into account the biases of each model.

With the exception of the Western North Pacific, the basin dependent thresholds produce better

results than the absolute thresholds. It is important to note that we were especially concerned

with the basins such as the Atlantic and Eastern North Pacific where few or no storms were being

detected, and in these cases, there is a good improvement, but the model still does not produce

frequencies near the observed ones.

The counting of the tropical storms can be further improved. The present algorithm counts

twice a storm that weakens and strengthens again later. This problem especially affects the storm

counting in the Western North Pacific due to the large number of typhoons per year. The tracking

algorithm described in the next section is able to count correctly storms that weaken and strengthen

again.
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3. Tracking

The procedure described in Appendix A detects storms that satisfy all our criteria and connects

them from one model output time to the next when they are sufficiently close, forming a storm

track. However, the tracks obtained by this procedure are usually very short. Visual examination

of the corresponding vorticity fields shows that the storm structure is visible well before and after

the detection criteria are met. This suggests that relaxing detection criteria would produce longer

tracks. However, if the detection criteria are simply relaxed uniformly, then spurious detections

will also occur.

We take the first position and time where the storm meets the detection criteria and then use

the low-level vorticity field to track the storm backward and forwards in time. First, the vorticity

in a 5 × 5 grid point box is examined around the first position defined previously (based on the

minimum sea level pressure), this called a vorticity matrix. The maximum value of the vorticity is

found in that matrix, if in the Northern Hemisphere, a minimum for the Southern Hemisphere, and

a new vorticity matrix is formed, now3× 3 grid points around this maximum. The centroid of this

new vorticity matrix is then calculated and defined as the initial storm center for that storm.

Using this initial storm center the storm is then tracked backward and forward in time as fol-

lows:

• The grid point nearest the centroid center is obtained.

• A vorticity matrix 3 × 3 is formed in the next time step around the grid point nearest the

centroid center from the previous time step.

• The absolute maximum value of the vorticity is found in this vorticity matrix and a new

vorticity matrix (3× 3) is defined around it.

• The position and value of the vorticity centroid of the next time step is calculated in this new

vorticity matrix.
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Figure 4: Tracks of a storm in the (a) Atlantic and (b) Western North Pacific using the new tracking
(∗) routine and the previous one (◦).

• If the absolute value of the vorticity at the centroid at the next time step is larger than the

threshold1.5× 10−5 this procedure is repeated.

This procedure is performed for all the storms obtained using the detection algorithm. Then,

the tracks obtained are compared and if they are the same, the two storms are now counted as a

single one. This procedure improves the tracks of the storms, which now are longer and more

similar to observed ones. The comparison of the original tracks and the new tracks of one storm in

the Atlantic and one in the Pacific is shown in Fig. 4. By examining the historical observed tracks

of tropical cyclones (Unysis, 2002) and comparing to the model tracks, one finds tropical cyclones

with similar paths to model tracks, while other model tracks are very different from observed ones.

The new tracks are a definite improvement toward typical observed tracks.
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Figure 5: Tracks of all tropical storms in the Western North Pacific during the June-October 1991
typhoon season for (a) one of the ensemble members using the new tracking routine (b) observed
tropical cyclones.

Figure 5a shows all the tropical storms in the Western North Pacific in one season (JJASO -

June to October) for one of the ensemble members. By comparing these tracks with observed

tracks in the typhoon season of the same year, shown in Fig. 5b, one sees that though the tracking

algorithm improves the original tracks, the model bias is not corrected. In the Western North

Pacific the model tends to form too many storms on the Central Pacific and too few in the South

China Sea, compared to observed tracks. Additionally, in the Northwest basins of the Atlantic and

in the Pacific, model tracks do not reach poleward latitudes as observed and most model tracks do

not have the typical observed characteristic of curving around the continent as they move poleward.

These model tracks biases would need to be corrected for application to landfall studies.

The counting of the storms is improved also since storms that were counted as two or three are

now correctly counted as a single storm. This can be seen in Fig. 4 and Table 2, especially in the

Western North Pacific. The procedure additionally makes the counting of the number of the storms

13



more reliable. The climatology of the storms in the different basins is improved using both the

new thresholds and the new tracking procedure, as can be seen in Fig. 6, which shows the annual

cycle for the model ensemble members in the South Pacific and in the Atlantic, using the previous

methodology and the one described here.

4. Conclusion

Algorithms for detection and tracking of tropical cyclones in AGCMs have presented and applied

to an ensemble of AGCM simulations. These algorithms use basin dependent statistics to define

detection criteria thresholds and a centroid vorticity calculation to track the cyclone in time. The

usage of these algorithms improves both the climatology and the tracks of tropical cyclones and

therefore improves the possible use of AGCMs in forecasting seasonal cyclone frequency. Sig-

nificant biases still remain and need to be addressed through increased resolution and changes in

model physics. Although, this work has presented results from a single model, the algorithms have

been applied successfully to several AGCMs.

Seasonal forecasts of tropical storm frequencies based on the application of these detection and

tracking algorithms applied to two-tier AGCM forecasts are presently being evaluated and will be

reported on in future work.

Acknowledgement The authors would like to thank Max-Planck Institute for Meteorology (Ham-

burg, Germany) for making their model ECHAM accessible to IRI. We thank Dr. Michael K.

Tippett (IRI) for his comments on this paper.

APPENDIX A
Detection Algorithm

1. The 850 hPa relative vorticity exceeds the vorticity threshold. In the southern hemisphere a

negative threshold is used.

2. The maximum surface windspeed in a centered7× 7 box exceeds the windspeed threshold.

3. The sea level pressure is the minimum in a centered7× 7 box.
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Figure 6: Annual Cycle of Tropical Storms in the (a) Atlantic (b) South Pacific using the new
detection and tracking routines (×) and the previous ones (◦). The observed annual cycle (?) is
also shown.
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4. The temperature anomaly averaged over the7×7 box and the three levels:300 hPa,500 hPa

and700 hPa exceeds the threshold.

5. The local temperature anomaly at300 hPa,500 hPa and700 hPa is positive.

6. The local temperature anomaly at300 hPa is smaller than at850 hPa.

7. The mean speed averaged over a7× 7 grid box is larger at850 hPa than at300 hPa.

8. The grid points representing the center of storms that obeyed all the criteria above are con-

nected if they are less than a certain distance from the center of the previous time-step an-

alyzed. This distance is defined by the frequency of the output of the model. For 6 hourly

outputs, we use 2 grid points (5.6 degrees) in longitude and/or latitude, while for daily out-

put, 3 grid points is the maximum distance (8.5 degrees) possible.

9. If the storms lasts at least2 days (1.5 in case of6 hourly output) identified as a model tropical

storm.

APPENDIX B
Construction of the PDFs

The PDFs and statistical properties of the chosen variables (vorticity, surface windspeed and

anomalous integrated temperature) are calculated in each basin using only the values during the

tropical cyclone season of that basin: June - October for the Western North Pacific, Eastern North

Pacific and North Atlantic; December - April for South Indian Ocean, Australian basin and South

Pacific Ocean; and May, June, September, October and November for the North Indian Ocean. The

points satisfy criteria 3,5 and 6. The PDFs were obtained following the procedure:

• Calculate the daily integrated temperature: sum of the temperature at700 hPa,500 hPa and

300 hPa in each grid point.

• A local average daily integrated temperature is calculated in a square,7 × 7 grid points,

centered in the grid point of interest.
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• The anomalous integrated daily temperature in the grid point in the center of the square is

calculated as the difference between the daily integrated temperature in that grid point and

the local average daily integrated temperature around it.

• The anomalous daily temperature for the levels850 hPa,700 hPa,500 hPa and300 hPa is

calculated, in analogy to the anomalous integrated temperature.

• The difference of the absolute temperature anomalies at850 hPa and300 hPa is calculated.

• The sign of the temperature anomalies at700 hPa,500 hPa and300 hPa is compared.

• In order to be defined as having a warm core, two different criteria must be satisfied: the

sign of the temperature anomalies in all three levels (700 hPa,500 hPa and300 hPa) must

be the same, and the temperature anomaly at850 hPa must be larger If these two criteria

are not satisfied, that grid point is excluded from our statistics of the probability distribution

functions and from the temperature anomalies statistics.

• The average and the standard deviation of the vorticity at850 hPa, surface winds, and inte-

grated temperature (only at the grid points not excluded by the previous criterion) is calcu-

lated for the time period of the integration (79-95) using the 13 ensemble members in each

of the ocean basins.

• The sea level pressure value is then examined in a box of7 × 7 grid points around the grid

point that passed all previous criteria, if this grid point is also a local minimum, this grid

point is used to construct our PDFs.

• We calculated one PDF for each ocean basin using the selected grid points integrated tem-

perature anomaly, low level vorticity and surface windspeed. This is done for each of the

basins, using all the years of the integration and all the ensemble members to construct the

basin dependent PDFs.
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• The vorticity at850 hPa is than examined for the grid points that satisfy the warm core

criteria, and if this in the interval of vorticity values considered, the sea level pressure value

is examined in a box of7 × 7 grid points around it. In case this is a local minimum, the

value of the integrated temperature anomaly of surface wind speed is also examined and a

probability distribution function is constructed for all the basins.
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